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Abstract

We prove that a principab-bundleE s over a complex abelian variety, whereG is a complex
reductive algebraic group, admits a flat holomorphic connection if and o#ly i isomorphic to
all the translations of it by the group structureAf
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1. Introduction

Let G be a complex connected reductive linear algebraic groupdamdomplex abelian
variety. A principalG-bundleE ; overA admits a flat holomorphic connectionf; is given
by a representation of the fundamental graypA) in G. If Eg admits a flat holomorphic
connection then for any € A the pullbacks} E¢ is isomorphic toEg, wherez, is the
isomorphism ofA defined byy — x + y. This can be proved using the fact thatis
homotopic to the identity automorphism af

We prove that the converse is true, namely, the condition#h&t is isomorphic to
E¢ for eachx € A implies thatEg admits a flat holomorphic connectiomteorem 3.1
The proof of the theorem involves showing that such a translation invadigmindle is
semistable.

We also show thak; admits a flat holomorphic connection if it admits a holomorphic
connection. In other words, the following three conditions are equivalent: (1) the isomor-
phism class ofEg is left invariant by translations id; (2) Eg admits a holomorphic
connection; (3 admits a flat holomorphic connection.
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2. Preliminaries

Let A be an abelian variety ovér of dimensiord, with d > 1. Fix an ample line bundle
L over A. For a coherent shedf on A, the degree of is defined as

degre€r) = / c1(F)er(L)* L.
A
A torsionfree sheaf on A is calledsemistablef for any nonzero coherent subshdabf
E the inequality
degre€r) - degre€E)
rank(F) — rank(E)

is valid [5, p. 168] For a torsionfree coherent sheffdefined on a Zariski open subset
U c A with the codimension of the complemefit\ U at least two, the direct imageF
is a coherent sheaf of, where is the inclusion map of/ in A. For such a shedf define

degre€F) .= degreé., F).

Let G be a complex connected reductive linear algebraic group. A prin€igaindle over
A is a smooth complex varieth; equipped with a right algebraic action@fand a smooth
surjective morphism

p:Eg— A, (2.1)
such that

(1) the mapp commutes with the actions @f, with G acting trivially onA;
(2) the map

Ec xG— Eg xa Eg,
to the fiber product defined ky, g) — (z, zg is an isomorphism.

Ramanathaifi7,8] extended the notion of semistability @-bundles. We will briefly
recall the definition. Take a principal-bundleEs over A. Let

Ep C Egly,

be a reduction of structure group &fto a parabolic subgroup C G over a nonempty
Zariski open subsdt C A with the codimension of the complemeat\ U being at least
two. Lety be a character a? dominant with respectto a Borel subgroup containe®l.ifihe
group P acts onEp x C as follows: the action of any € P sends(z, ¢) to (zg x(g~1)c).
So

_EPX(C
P

is a line bundle ovet/, which is called the line bundle associatedtp for y.
TheG-bundleE; is calledsemistabléf in everysuch situation describe above, the degree
of the line bundleE, is nonpositive.

E,:
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For any analytic open subsEtc A, consider the inverse image 1(U), wherep is the
projection in(2.1), which is a complex manifold equipped with an actiontafLet C(U)
denote the space of holomorphic vector fieldgoR(U) that are left invariant by the action
of G on p~1(U). Note thatC(U) is closed under multiplication by holomorphic functions
pulled back fromU. Since the action of; is transitive on the fibers g, the sheaf om
that associates to arty the vector spacé(U) is coherent analytic. Let AE) denote the
corresponding holomorphic, hence algebraic, vector bundleddefined by this coherent
sheaf.

The vector bundle AiE ;) defined above is known as tAéiyah bundldor E¢ [1]. Since
C(U) is closed under the Lie bracket operation, there is an induced Lie algebra structure on
the sections of AtEg).

Let g be the Lie algebra of;, and

Eg xg
G
the adjoint bundle¢; acts org by conjugation. There is an exact sequence of vector bundles

ad(Eg) =

)

0— ad(Eg) — At(Eg)>TA— 0, (2.2)

over A whereo is defined using the differentialg and the subbundle &8¢ ) corresponds
to the G-invariant vertical vector fieldgl]. This sequence is known as tAdéiyah exact
sequence

A holomorphic connectiolon E is a splitting of the Atiyah exact sequence, that is, a
homomorphism of holomorphic vector bundles

D:TA— At(Eq),

such thatr o D is the identity automorphism GfA [1]. The obstruction foiD to be a Lie

algebra homomorphism is tlervatureof D. The curvature is a & ¢)-valued holomor-
phic two form onA. The holomorphic connectiod is calledflat if its curvature vanishes
identically.

A holomorphic connection on a vector bundfeis a first order holomorphic differen-
tial operator fromv to 9}4 ® V satisfying the Leibniz identity. Note that a holomorphic
connection on a holomorphic vector bundle of ranis a holomorphic connection on the
corresponding principal Glz, C)-bundle.

3. Trandation invariant bundles
For anyx € A, let
Tyl A—> A,

be the translation map defined using the group structude of other wordsz, (y) = x+y.

Theorem 3.1. Let E¢ be a principalG-bundle overA. The following three are equivalent

(1) TheG-bundleEg admits a holomorphic connection
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(2) For eachx € X, the pullbackG-bundlet} E¢ is isomorphic toEg.
(3) TheG-bundleEs admits a flat holomorphic connection

Proof. Itis easy to see that (3) implies (2),asis homotopic to the identity map. To prove
this assertion in detail, leb be a flat holomorphic connection dfy;. Fix a smooth path
y : [0, 1] — A connectingr with the identity element of A. So,y(0) = ¢ andy(1) = x.
Let

T:.Eg— ‘L’:E(;,

be the isomorphism aff -bundles that sends the fiber Bfover anyy € A to the fiber ofE
overx + y using parallel transport (for the connectity) along the pathy, : [0,1] — A
defined byy, (1) = y() + y. Since the holomorphic connectid@nis flat, the mag" defined
this way is a holomorphic isomorphism 6fbundles. Therefore, (3) implies (2).

We will now show that ifE; admits a holomorphic connection, then it admits a flat
holomorphic connection. We will first recall frof@] a criterion for the existence of a flat
holomorphic connection.

TheG-bundleEs admits a flat holomorphic connection if the following three conditions
hold:

(a) theG-bundleEg is semistable;
(b) c2(ad(Eg)) € H*(A, Q) vanishes;
(c) for every charactey of G, the associated line bundle

 EgxC
E, = G

overA is of degree zero; the quotient is for the actioriodiefined as follows: the action
of anyg € G sendd(z, ¢) to (zg x(g He).

See[2, p. 205, Theorem 4.5]

Let D be a holomorphic connection on tiiebundle E¢. The holomorphic connection
D induces a holomorphic connection on any vector bundle advessociated t&g by
some representation @f. In particular, both a@Fg) and E, have induced holomorphic
connections. Now, a theorem of Atiyah says that for a holomorphic vector bimnaig¢h
a holomorphic connection all the rational Chern classeg ¢bf positive degree) vanish
[1, Theorem 4, p. 192]

Therefore, in view of the above criterion[@f, to prove (1) implies (3) in the statement of
the theorem all we needto show s tligt is semistable. Now, thé-bundleE; is semistable
if the vector bundle a ;) is semistabl¢2, Lemma 4.3, p. 202 Actually the content of
Lemma 4.3 of2] is thatE; is semistable if and only if ad& ) is semistable. The assertion
that E¢ is semistable if atE ) is semistable is actually a straight-forward consequence
of the definition of semistability of£;.) Since the holomorphic connectiab on Eg
induces a holomorphic connection on the vector bund{&ggl, to prove semistability of
ad(E) it suffices to show that any vector bundle ovewith a holomorphic connection is
semistable.

Let F be a holomorphic vector bundle ovarequipped with a holomorphic connection
Dg. Consider the Harder—Narasimhan filtrationfof5, Theorem 7.15, p. 174lf F is not

: (3.1)
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semistable, lef; be the maximal semistable subsheafgfthat is, Fy is the first term in
the Harder—Narasimhan filtration &f.
Let

F
S:F— 21 ® (F) , (3.2)
1

be the second fundamental form®f for the connectiorDg on F. SoS is the composition

Id F
F F@Q}‘(X)F—%Q}‘@(F)
1
of homomorphisms of sheaves, where F — F/F; is the quotient map. Note that the
composition i90 4-linear.
From the properties of the Harder—Narasimhan filtration it follows immediately that

H° <A, Hom (Fl, F%)) =0. (3.3)

Indeed, the slope={degree/rank) ofF; is strictly greater than the slope of any coherent
subsheaf off/ F,. Since F1 is semistable, any quotient df; has slope at least that of
F1. Therefore, if there is a nonzero homomorphismFefto F/ F1, then the image of the
homomorphism contradicts the condition that the slopé&ofs strictly greater than the
slope of any subsheaf &/ F1.

SinceQ}1 is the trivial vector bundle of rank, we have

F F
H° <A, Hom <F1, 2t e <—>>) =H° (A, Hom (Fl, —)) ®c C*.
Fr g1

Now (3.3) gives

H° <A, Hom (Fl, 2l e <£)>> =0.
F1

In particular,S = 0, whereS is defined in(3.2). In other words, the subshe&f of F is
preserved byD. Therefore, degreéé) = 0[1, Theorem 4, p. 192 Note that sincer; is
torsionfree, it is locally free on a Zariski open subgetvith the codimension ot \ U at
least two. Therefore, degre) = degre€Fi|y).) On the other hand degrgé) = 0 as
F admits a holomorphic connection. Since degrag = degregF’), the vector bundle”
must be semistable. Consequen#iyadmits a flat holomorphic connection by the criterion
of [2].

Now we will show that (2) implies (3) in the statement of the theorem. Sd; debe a
principal G-bundle overA with the property that} E is isomorphic taE s for eachx € A.

Let V be a complex lefG-module of dimension. Consider the associated vector bundle

EG x V

G
of rankn over A, where the quotient is for the action 6fdefined as follows: the action of
anyg € G sends(z, v) € Eg x V to (zg g~ 1v). The condition that} E¢ is isomorphic to

Ey =
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E¢ implies that the vector bundlg Ey is isomorphic toEy. In particular, the line bundle

L= /\ Ey
(the dimension ofV is n) over A has the property that' £ is isomorphic tol for each
x € A. This implies that

degreél) =0 (3.4)
In [6, Definition, p. 74] Mumford defines PRy A) to be the group of all line bundlds over
A with the property that} L’ is isomorphic ta.’ for eachx € A (the mapy in [6, Definition,
p. 74]is defined in p. 60 0f6]). Then itis shown that Pf¢A) (with this definition) coincides
with the usual Pi&(A), namely, the group of topologically trivial holomorphic line bundles
over A (se€[6, p. 86).
If the vector bundleEy is not semistable, let

74 C Ey,

be the maximal semistable subsheaftif, that is, the subsheaf’ is the first term in the
Harder—Narasimhan filtration @y . Since

TfEy £ Ey,

from the uniqueness of the Harder—Narasimhan filtration it follows immediately that
v =V,

Therefore, the determinant line bundiéPV’ has the property that
TF AP Y = AloPy

As we saw in(3.4), this implies that degré&’) = degregA®V’) = 0. Since
degre€Ey) = 0 = degre¢V’),

we conclude thaEy is semistable.

Consequently, the condition that the pullb&&lbundler? E is isomorphic taE ¢ for any
x € Aimpliesthatthe vector bundle afl;) is semistable and the line bundlg in (3.1)is of
degree zero. In view of the criterion [#] for the existence of a flat holomorphic connection
(criterion described earlier), to complete the proof we need to showtkati Eg)) €
H*(A, Q) vanishes.

Let

C2(ad(Eg)) € CH?(A), (3.5)

be the image of the second Chern class of the vector bund@ig;adn the Chow group (see
Chapter 3 of4]). The condition that

7y ad(Eg) = ad(Eg)

for eachx € A implies that the elemer,(ad(Eg)) € CH2(A) is left invariant by the
action ofA on CH:(A) by translations.



382 I. Biswas/ Journal of Geometry and Physics 49 (2004) 376-384
We will now show that if an elemenrte CH?(A) has the property that
c=1,(c) € CHZ(A)

for eachx € X, then the cycle class efin H*(A, Q) vanishes.
The cycle class map will be denoted thy Sincer, is homotopic to the identity map of
A, we have

Y(t(c)) = ¥(c) € HY(A, Q),

that is, 7, (c) andc are homologically equivalent. So the imagerofc) — ¢ € CH2(A) by
the Abel-Jacobi map AJ

H3(A,C)

Ads(tx(c) — ) € ‘IZ(A) = F2H3(A C) + H‘?’(A Z)

Se€[3, p. 22]for the Abel-Jacobi map and the definition&(A). Let
I:A— J3(A), (3.6)

be the map that sends apye A to Ada(t,(c) —¢) € J2(A). This mapl is holomorphic,
which is a consequence of the properties &A).

The holomorphic cotangent spag of A at the identity element will be denoted by
W. So H"J/(A) is naturally identified with A'W) ® (A/W), whereW is the conjugate of
W, equivalently,w = (T21A)*,

Consider the differential

di(e) : W* = ToJ?(A) = A3W & (W @ A°W), (3.7)

at the poink € A of the mapl constructed ir{3.6), here Oc J2(A) is the identity element.
Note that

V(c) € H2%(A) = A’W @ A°W.
The homomorphism He) in (3.7)is the contraction ofs(c). In other words
dI(e)(w) = (w, Y(c)) € W ® A2W C ToJ?(A)

forallw € W*, where(—, —) is the contraction oW * with W. That d/(e) is the contraction
homomorphism is a straight-forward consequence of the description of the differential of
the Abel-Jacobi map (s€®, p. 28).

Therefore, the condition

7,.(c) = ¢ € CH?(A)

for all x € A implies thaty(c) = 0 (as the contraction witW* vanishes identically).
Consequentlyy(C2(ad(Eg))) = 0. Buty(C2(ad(Eg))) = c2(ad(Eg)) € H%A, Q).

So E¢ admits a flat holomorphic connection by the criterion[2}. This completes the

proof of the theorem. O
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Letx’ € A be such that the subgroup 4fgenerated by’ is Zariski dense im. It is easy
to see that such an element exists. In fact, the subset defined by all eleméntétiithis
property is Zariski dense.

Theorem 3.1has the following corollary.

Corollary 3.2. Let Eg be a principalG-bundle overA such thatr, E¢ is isomorphic to
E. ThenEg admits a flat holomorphic connection

Proof. For any characteg of G, consider the line bundl&, defined in(3.1). Letc =
c1(Ey) € H2(A, Q) be the first Chern class, and denote)5yhe element defined b¥

in the component Pic¢A) of the Picard group. Lell,, C A be the subgroup generated by
x'. Sincet(x’) = x/ for all x € Hy and H, is Zariski dense im, we haver(y') = x’ for

all x € A. As we saw in the proof oTheorem 3.1this implies that1(E,) = [x'] = 0.

Similarly, sinceC2(ad(Eg)) (defined in(3.5)) coincides witht,(C2(ad(Eg))) for all x
in the Zariski dense subgroug,/, we haver, (C2(ad(Eg))) = C2(ad(Eg)) for all x € A.
Consequently, as in the proof ®heorem 3.1we conclude that;(ad(Eg)) = 0.

In the proof of Theorem 3.1we saw that ifE¢ is isomorphic to all translations of it,
then any associated vector bundle is semistable. This proof clearly goes through under the
assumption thatyEg = E¢ for all y in the Zariski dense subgroug, . Therefore, the
proof of the corollary is complete. O

The above corollary can be reformulated as follows.

Letxg € A andE¢ aG-bundle such that,,Ec = Eg. Let Ay, C A be the connected
component of the Zariski closure of the subgroup generated lopntaining the identity
element. SA,, is a subabelian variety of.

Corollary3.3. TheG-bundleE¢|4,, overthe abelian variety ., admits aflat holomorphic
connection

This corollary follows fromCorollary 3.2by settingA = A,,.
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