Flat principal bundles over an abelian variety

Indranil Biswas*
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Received 22 October 2002; received in revised form 1 July 2003

Abstract

We prove that a principal G-bundle E_{G} over a complex abelian variety A, where G is a complex reductive algebraic group, admits a flat holomorphic connection if and only if E_{G} is isomorphic to all the translations of it by the group structure of A.

© 2003 Elsevier B.V. All rights reserved.
$J G P$ SC: Differential geometry
MSC: 14F05; 14K99; 32L10

Keywords: Principal bundle; Abelian variety; Holomorphic connection

1. Introduction

Let G be a complex connected reductive linear algebraic group and A a complex abelian variety. A principal G-bundle E_{G} over A admits a flat holomorphic connection if E_{G} is given by a representation of the fundamental group $\pi_{1}(A)$ in G. If E_{G} admits a flat holomorphic connection then for any $x \in A$ the pullback $\tau_{x}^{*} E_{G}$ is isomorphic to E_{G}, where τ_{x} is the isomorphism of A defined by $y \mapsto x+y$. This can be proved using the fact that τ_{x} is homotopic to the identity automorphism of A.

We prove that the converse is true, namely, the condition that $\tau_{x}^{*} E_{G}$ is isomorphic to E_{G} for each $x \in A$ implies that E_{G} admits a flat holomorphic connection (Theorem 3.1). The proof of the theorem involves showing that such a translation invariant G-bundle is semistable.

We also show that E_{G} admits a flat holomorphic connection if it admits a holomorphic connection. In other words, the following three conditions are equivalent: (1) the isomorphism class of E_{G} is left invariant by translations in A; (2) E_{G} admits a holomorphic connection; (3) E_{G} admits a flat holomorphic connection.

[^0]
2. Preliminaries

Let A be an abelian variety over \mathbb{C} of dimension d, with $d \geq 1$. Fix an ample line bundle L over A. For a coherent sheaf F on A, the degree of F is defined as

$$
\operatorname{degree}(F):=\int_{A} c_{1}(F) c_{1}(L)^{d-1}
$$

A torsionfree sheaf E on A is called semistable if for any nonzero coherent subsheaf F of E the inequality

$$
\frac{\operatorname{degree}(F)}{\operatorname{rank}(F)} \leq \frac{\operatorname{degree}(E)}{\operatorname{rank}(E)}
$$

is valid [5, p. 168]. For a torsionfree coherent sheaf F defined on a Zariski open subset $U \subset A$ with the codimension of the complement $A \backslash U$ at least two, the direct image $\iota_{*} F$ is a coherent sheaf on A, where ι is the inclusion map of U in A. For such a sheaf F define

$$
\operatorname{degree}(F):=\operatorname{degree}\left(\iota_{*} F\right) .
$$

Let G be a complex connected reductive linear algebraic group. A principal G-bundle over A is a smooth complex variety E_{G} equipped with a right algebraic action of G and a smooth surjective morphism

$$
\begin{equation*}
p: E_{G} \rightarrow A \tag{2.1}
\end{equation*}
$$

such that
(1) the map p commutes with the actions of G, with G acting trivially on A;
(2) the map

$$
E_{G} \times G \rightarrow E_{G} \times_{A} E_{G},
$$

to the fiber product defined by $(z, g) \mapsto(z, z g)$ is an isomorphism.
Ramanathan $[7,8]$ extended the notion of semistability to G-bundles. We will briefly recall the definition. Take a principal G-bundle E_{G} over A. Let

$$
\left.E_{P} \subset E_{G}\right|_{U}
$$

be a reduction of structure group of E to a parabolic subgroup $P \subset G$ over a nonempty Zariski open subset $U \subset A$ with the codimension of the complement $A \backslash U$ being at least two. Let χ be a character of P dominant with respect to a Borel subgroup contained in P. The group P acts on $E_{P} \times \mathbb{C}$ as follows: the action of any $g \in P$ sends (z, c) to $\left(z g, \chi\left(g^{-1}\right) c\right)$. So

$$
E_{\chi}:=\frac{E_{P} \times \mathbb{C}}{P}
$$

is a line bundle over U, which is called the line bundle associated to E_{P} for χ.
The G-bundle E_{G} is called semistable if in every such situation describe above, the degree of the line bundle E_{χ} is nonpositive.

For any analytic open subset $U \subset A$, consider the inverse image $p^{-1}(U)$, where p is the projection in (2.1), which is a complex manifold equipped with an action of G. Let $\mathcal{C}(U)$ denote the space of holomorphic vector fields on $p^{-1}(U)$ that are left invariant by the action of G on $p^{-1}(U)$. Note that $\mathcal{C}(U)$ is closed under multiplication by holomorphic functions pulled back from U. Since the action of G is transitive on the fibers of p, the sheaf on A that associates to any U the vector space $\mathcal{C}(U)$ is coherent analytic. Let $\operatorname{At}\left(E_{G}\right)$ denote the corresponding holomorphic, hence algebraic, vector bundle over A defined by this coherent sheaf.

The vector bundle $\operatorname{At}\left(E_{G}\right)$ defined above is known as the Atiyah bundle for E_{G} [1]. Since $\mathcal{C}(U)$ is closed under the Lie bracket operation, there is an induced Lie algebra structure on the sections of $\operatorname{At}\left(E_{G}\right)$.

Let \mathfrak{g} be the Lie algebra of G, and

$$
\operatorname{ad}\left(E_{G}\right):=\frac{E_{G} \times \mathfrak{g}}{G}
$$

the adjoint bundle; G acts on \mathfrak{g} by conjugation. There is an exact sequence of vector bundles

$$
\begin{equation*}
0 \rightarrow \operatorname{ad}\left(E_{G}\right) \rightarrow \operatorname{At}\left(E_{G}\right) \xrightarrow{\sigma} T A \rightarrow 0, \tag{2.2}
\end{equation*}
$$

over A where σ is defined using the differential $\mathrm{d} p$, and the subbundle $\operatorname{ad}\left(E_{G}\right)$ corresponds to the G-invariant vertical vector fields [1]. This sequence is known as the Atiyah exact sequence.

A holomorphic connection on E is a splitting of the Atiyah exact sequence, that is, a homomorphism of holomorphic vector bundles

$$
D: T A \rightarrow \operatorname{At}\left(E_{G}\right)
$$

such that $\sigma \circ D$ is the identity automorphism of $T A$ [1]. The obstruction for D to be a Lie algebra homomorphism is the curvature of D. The curvature is a $\operatorname{ad}\left(E_{G}\right)$-valued holomorphic two form on A. The holomorphic connection D is called flat if its curvature vanishes identically.

A holomorphic connection on a vector bundle V is a first order holomorphic differential operator from V to $\Omega_{A}^{1} \otimes V$ satisfying the Leibniz identity. Note that a holomorphic connection on a holomorphic vector bundle of rank n is a holomorphic connection on the corresponding principal $\operatorname{GL}(n, \mathbb{C})$-bundle.

3. Translation invariant bundles

For any $x \in A$, let

$$
\tau_{x}: A \rightarrow A
$$

be the translation map defined using the group structure of A. In other words, $\tau_{x}(y)=x+y$.
Theorem 3.1. Let E_{G} be a principal G-bundle over A. The following three are equivalent:
(1) The G-bundle E_{G} admits a holomorphic connection.
(2) For each $x \in X$, the pullback G-bundle $\tau_{x}^{*} E_{G}$ is isomorphic to E_{G}.
(3) The G-bundle E_{G} admits a flat holomorphic connection.

Proof. It is easy to see that (3) implies (2), as τ_{x} is homotopic to the identity map. To prove this assertion in detail, let D be a flat holomorphic connection on E_{G}. Fix a smooth path $\gamma:[0,1] \rightarrow A$ connecting x with the identity element e of A. So, $\gamma(0)=e$ and $\gamma(1)=x$. Let

$$
T: E_{G} \rightarrow \tau_{x}^{*} E_{G}
$$

be the isomorphism of G-bundles that sends the fiber of E over any $y \in A$ to the fiber of E over $x+y$ using parallel transport (for the connection D) along the path $\gamma_{y}:[0,1] \rightarrow A$ defined by $\gamma_{y}(t)=\gamma(t)+y$. Since the holomorphic connection D is flat, the map T defined this way is a holomorphic isomorphism of G-bundles. Therefore, (3) implies (2).

We will now show that if E_{G} admits a holomorphic connection, then it admits a flat holomorphic connection. We will first recall from [2] a criterion for the existence of a flat holomorphic connection.

The G-bundle E_{G} admits a flat holomorphic connection if the following three conditions hold:
(a) the G-bundle E_{G} is semistable;
(b) $c_{2}\left(\operatorname{ad}\left(E_{G}\right)\right) \in H^{4}(A, \mathbb{Q})$ vanishes;
(c) for every character χ of G, the associated line bundle

$$
\begin{equation*}
E_{\chi}:=\frac{E_{G} \times \mathbb{C}}{G} \tag{3.1}
\end{equation*}
$$

over A is of degree zero; the quotient is for the action of G defined as follows: the action of any $g \in G$ sends (z, c) to $\left(z g, \chi\left(g^{-1}\right) c\right)$.

See [2, p. 205, Theorem 4.5].
Let D be a holomorphic connection on the G-bundle E_{G}. The holomorphic connection D induces a holomorphic connection on any vector bundle over A associated to E_{G} by some representation of G. In particular, both $\operatorname{ad}\left(E_{G}\right)$ and E_{χ} have induced holomorphic connections. Now, a theorem of Atiyah says that for a holomorphic vector bundle V with a holomorphic connection all the rational Chern classes of V (of positive degree) vanish [1, Theorem 4, p. 192].

Therefore, in view of the above criterion of [2], to prove (1) implies (3) in the statement of the theorem all we need to show is that E_{G} is semistable. Now, the G-bundle E_{G} is semistable if the vector bundle $\operatorname{ad}\left(E_{G}\right)$ is semistable [2, Lemma 4.3, p. 202]. (Actually the content of Lemma 4.3 of [2] is that E_{G} is semistable if and only if $\operatorname{ad}\left(E_{G}\right)$ is semistable. The assertion that E_{G} is semistable if $\operatorname{ad}\left(E_{G}\right)$ is semistable is actually a straight-forward consequence of the definition of semistability of E_{G}.) Since the holomorphic connection D on E_{G} induces a holomorphic connection on the vector bundle $\operatorname{ad}\left(E_{G}\right)$, to prove semistability of $\operatorname{ad}\left(E_{G}\right)$ it suffices to show that any vector bundle over A with a holomorphic connection is semistable.

Let F be a holomorphic vector bundle over A equipped with a holomorphic connection D_{0}. Consider the Harder-Narasimhan filtration of F [5, Theorem 7.15, p. 174]. If F is not
semistable, let F_{1} be the maximal semistable subsheaf of F, that is, F_{1} is the first term in the Harder-Narasimhan filtration of F.

Let

$$
\begin{equation*}
S: F_{1} \rightarrow \Omega_{A}^{1} \otimes\left(\frac{F}{F_{1}}\right) \tag{3.2}
\end{equation*}
$$

be the second fundamental form of F_{1} for the connection D_{0} on F. So S is the composition

$$
F_{1} \hookrightarrow F \xrightarrow{D_{0}} \Omega_{A}^{1} \otimes F \xrightarrow{\mathrm{Id} \otimes q} \Omega_{A}^{1} \otimes\left(\frac{F}{F_{1}}\right)
$$

of homomorphisms of sheaves, where $q: F \rightarrow F / F_{1}$ is the quotient map. Note that the composition is \mathcal{O}_{A}-linear.

From the properties of the Harder-Narasimhan filtration it follows immediately that

$$
\begin{equation*}
H^{0}\left(A, \operatorname{Hom}\left(F_{1}, \frac{F}{F_{1}}\right)\right)=0 \tag{3.3}
\end{equation*}
$$

Indeed, the slope ($=$ degree $/ \mathrm{rank}$) of F_{1} is strictly greater than the slope of any coherent subsheaf of F / F_{1}. Since F_{1} is semistable, any quotient of F_{1} has slope at least that of F_{1}. Therefore, if there is a nonzero homomorphism of F_{1} to F / F_{1}, then the image of the homomorphism contradicts the condition that the slope of F_{1} is strictly greater than the slope of any subsheaf of F / F_{1}.

Since Ω_{A}^{1} is the trivial vector bundle of rank d, we have

$$
H^{0}\left(A, \operatorname{Hom}\left(F_{1}, \Omega_{A}^{1} \otimes\left(\frac{F}{F_{1}}\right)\right)\right)=H^{0}\left(A, \operatorname{Hom}\left(F_{1}, \frac{F}{F_{1}}\right)\right) \otimes_{\mathbb{C}} \mathbb{C}^{d}
$$

Now (3.3) gives

$$
H^{0}\left(A, \operatorname{Hom}\left(F_{1}, \Omega_{A}^{1} \otimes\left(\frac{F}{F_{1}}\right)\right)\right)=0
$$

In particular, $S=0$, where S is defined in (3.2). In other words, the subsheaf F_{1} of F is preserved by D. Therefore, degree $\left(F_{1}\right)=0$ [1, Theorem 4, p. 192]. (Note that since F_{1} is torsionfree, it is locally free on a Zariski open subset U with the codimension of $A \backslash U$ at least two. Therefore, degree $\left(F_{1}\right)=\operatorname{degree}\left(\left.F_{1}\right|_{U}\right)$.) On the other hand degree $(F)=0$ as F admits a holomorphic connection. Since degree $\left(F_{1}\right)=\operatorname{degree}(F)$, the vector bundle F must be semistable. Consequently, F admits a flat holomorphic connection by the criterion of [2].

Now we will show that (2) implies (3) in the statement of the theorem. So, let E_{G} be a principal G-bundle over A with the property that $\tau_{x}^{*} E_{G}$ is isomorphic to E_{G} for each $x \in A$.

Let V be a complex left G-module of dimension n. Consider the associated vector bundle

$$
E_{V}:=\frac{E_{G} \times V}{G}
$$

of rank n over A, where the quotient is for the action of G defined as follows: the action of any $g \in G$ sends $(z, v) \in E_{G} \times V$ to $\left(z g, g^{-1} v\right)$. The condition that $\tau_{x}^{*} E_{G}$ is isomorphic to
E_{G} implies that the vector bundle $\tau_{x}^{*} E_{V}$ is isomorphic to E_{V}. In particular, the line bundle

$$
\mathcal{L}:=\bigwedge^{n} E_{V}
$$

(the dimension of V is n) over A has the property that $\tau_{x}^{*} \mathcal{L}$ is isomorphic to \mathcal{L} for each $x \in A$. This implies that

$$
\begin{equation*}
\text { degree }(\mathcal{L})=0 \tag{3.4}
\end{equation*}
$$

In [6, Definition, p. 74], Mumford defines $\operatorname{Pic}^{0}(A)$ to be the group of all line bundles L^{\prime} over A with the property that $\tau_{x}^{*} L^{\prime}$ is isomorphic to L^{\prime} for each $x \in A$ (the map ψ in [6, Definition, p. 74] is defined in p. 60 of [6]). Then it is shown that $\operatorname{Pic}^{0}(A)$ (with this definition) coincides with the usual $\operatorname{Pic}^{0}(A)$, namely, the group of topologically trivial holomorphic line bundles over A (see [6, p. 86]).

If the vector bundle E_{V} is not semistable, let

$$
V^{\prime} \subset E_{V}
$$

be the maximal semistable subsheaf of E_{V}, that is, the subsheaf V^{\prime} is the first term in the Harder-Narasimhan filtration of E_{V}. Since

$$
\tau_{x}^{*} E_{V} \cong E_{V}
$$

from the uniqueness of the Harder-Narasimhan filtration it follows immediately that

$$
\tau_{x}^{*} V^{\prime} \cong V^{\prime}
$$

Therefore, the determinant line bundle $\wedge^{\text {top }} V^{\prime}$ has the property that

$$
\tau_{x}^{*} \wedge^{\mathrm{top}} V^{\prime} \cong \wedge^{\mathrm{top}} V^{\prime}
$$

As we saw in (3.4), this implies that degree $\left(V^{\prime}\right)=\operatorname{degree}\left(\wedge^{\text {top }} V^{\prime}\right)=0$. Since

$$
\operatorname{degree}\left(E_{V}\right)=0=\operatorname{degree}\left(V^{\prime}\right)
$$

we conclude that E_{V} is semistable.
Consequently, the condition that the pullback G-bundle $\tau_{x}^{*} E_{G}$ is isomorphic to E_{G} for any $x \in A$ implies that the vector bundle $\operatorname{ad}\left(E_{G}\right)$ is semistable and the line bundle E_{χ} in (3.1) is of degree zero. In view of the criterion of [2] for the existence of a flat holomorphic connection (criterion described earlier), to complete the proof we need to show that $c_{2}\left(\operatorname{ad}\left(E_{G}\right)\right) \in$ $H^{4}(A, \mathbb{Q})$ vanishes.

Let

$$
\begin{equation*}
C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right) \in \mathrm{CH}^{2}(A) \tag{3.5}
\end{equation*}
$$

be the image of the second Chern class of the vector bundle $\operatorname{ad}\left(E_{G}\right)$ in the Chow group (see Chapter 3 of [4]). The condition that

$$
\tau_{x}^{*} \operatorname{ad}\left(E_{G}\right) \cong \operatorname{ad}\left(E_{G}\right)
$$

for each $x \in A$ implies that the element $C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right) \in \mathrm{CH}^{2}(A)$ is left invariant by the action of A on $\mathrm{CH}^{2}(A)$ by translations.

We will now show that if an element $c \in \mathrm{CH}^{2}(A)$ has the property that

$$
c=\tau_{x}(c) \in \mathrm{CH}^{2}(A)
$$

for each $x \in X$, then the cycle class of c in $H^{4}(A, \mathbb{Q})$ vanishes.
The cycle class map will be denoted by ψ. Since τ_{x} is homotopic to the identity map of A, we have

$$
\psi\left(\tau_{x}(c)\right)=\psi(c) \in H^{4}(A, \mathbb{Q})
$$

that is, $\tau_{x}(c)$ and c are homologically equivalent. So the image of $\tau_{x}(c)-c \in \mathrm{CH}^{2}(A)$ by the Abel-Jacobi map AJ_{A}

$$
\mathrm{AJ}_{A}\left(\tau_{x}(c)-c\right) \in J^{2}(A):=\frac{H^{3}(A, \mathbb{C})}{F^{2} H^{3}(A, \mathbb{C})+H^{3}(A, \mathbb{Z})}
$$

See [3, p. 22] for the Abel-Jacobi map and the definition of $J^{2}(A)$. Let

$$
\begin{equation*}
I: A \rightarrow J^{2}(A) \tag{3.6}
\end{equation*}
$$

be the map that sends any $y \in A$ to $\mathrm{AJ}_{A}\left(\tau_{y}(c)-c\right) \in J^{2}(A)$. This map I is holomorphic, which is a consequence of the properties of $J^{2}(A)$.

The holomorphic cotangent space Ω_{e}^{1} of A at the identity element e will be denoted by W. So $H^{i, j}(A)$ is naturally identified with $\left(\wedge^{i} W\right) \otimes\left(\wedge^{j} \bar{W}\right)$, where \bar{W} is the conjugate of W, equivalently, $\bar{W}=\left(T_{e}^{0,1} A\right)^{*}$.

Consider the differential

$$
\begin{equation*}
\mathrm{d} I(e): W^{*} \rightarrow T_{0} J^{2}(A)=\wedge^{3} \bar{W} \oplus\left(W \otimes \wedge^{2} \bar{W}\right) \tag{3.7}
\end{equation*}
$$

at the point $e \in A$ of the map I constructed in (3.6); here $0 \in J^{2}(A)$ is the identity element. Note that

$$
\psi(c) \in H^{2,2}(A)=\wedge^{2} W \otimes \wedge^{2} \bar{W}
$$

The homomorphism $\mathrm{d} I(e)$ in (3.7) is the contraction of $\psi(c)$. In other words

$$
\mathrm{d} I(e)(w)=\langle w, \psi(c)\rangle \in W \otimes \wedge^{2} \bar{W} \subset T_{0} J^{2}(A)
$$

for all $w \in W^{*}$, where $\langle-,-\rangle$ is the contraction of W^{*} with W. That $\mathrm{d} I(e)$ is the contraction homomorphism is a straight-forward consequence of the description of the differential of the Abel-Jacobi map (see [3, p. 28]).

Therefore, the condition

$$
\tau_{x}(c)=c \in \mathrm{CH}^{2}(A)
$$

for all $x \in A$ implies that $\psi(c)=0$ (as the contraction with W^{*} vanishes identically).
Consequently, $\psi\left(C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)\right)=0$. But $\psi\left(C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)\right)=c_{2}\left(\operatorname{ad}\left(E_{G}\right)\right) \in H^{4}(A, \mathbb{Q})$. So E_{G} admits a flat holomorphic connection by the criterion of [2]. This completes the proof of the theorem.

Let $x^{\prime} \in A$ be such that the subgroup of A generated by x^{\prime} is Zariski dense in A. It is easy to see that such an element exists. In fact, the subset defined by all elements of A with this property is Zariski dense.

Theorem 3.1 has the following corollary.

Corollary 3.2. Let E_{G} be a principal G-bundle over A such that $\tau_{x^{\prime}}^{*} E_{G}$ is isomorphic to E_{G}. Then E_{G} admits a flat holomorphic connection.

Proof. For any character χ of G, consider the line bundle E_{χ} defined in (3.1). Let $c:=$ $c_{1}\left(E_{\chi}\right) \in H^{2}(A, \mathbb{Q})$ be the first Chern class, and denote by χ^{\prime} the element defined by E_{χ} in the component $\operatorname{Pic}^{c}(A)$ of the Picard group. Let $H_{x^{\prime}} \subset A$ be the subgroup generated by x^{\prime}. Since $\tau\left(\chi^{\prime}\right)=\chi^{\prime}$ for all $x \in H_{x^{\prime}}$ and $H_{x^{\prime}}$ is Zariski dense in A, we have $\tau\left(\chi^{\prime}\right)=\chi^{\prime}$ for all $x \in A$. As we saw in the proof of Theorem 3.1, this implies that $c_{1}\left(E_{\chi}\right)=\left[\chi^{\prime}\right]=0$.

Similarly, since $C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)$ (defined in (3.5)) coincides with $\tau_{x}\left(C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)\right.$) for all x in the Zariski dense subgroup $H_{x^{\prime}}$, we have $\tau_{x}\left(C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)\right)=C_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)$ for all $x \in A$. Consequently, as in the proof of Theorem 3.1, we conclude that $c_{2}\left(\operatorname{ad}\left(E_{G}\right)\right)=0$.

In the proof of Theorem 3.1 we saw that if E_{G} is isomorphic to all translations of it, then any associated vector bundle is semistable. This proof clearly goes through under the assumption that $\tau_{y}^{*} E_{G} \cong E_{G}$ for all y in the Zariski dense subgroup $H_{x^{\prime}}$. Therefore, the proof of the corollary is complete.

The above corollary can be reformulated as follows.
Let $x_{0} \in A$ and E_{G} a G-bundle such that $\tau_{x_{0}} E_{G} \cong E_{G}$. Let $A_{x_{0}} \subset A$ be the connected component of the Zariski closure of the subgroup generated by x_{0} containing the identity element. So $A_{x_{0}}$ is a subabelian variety of A.

Corollary 3.3. The G-bundle $\left.E_{G}\right|_{A_{x_{0}}}$ over the abelian variety $A_{x_{0}}$ admits a flat holomorphic connection.

This corollary follows from Corollary 3.2 by setting $A=A_{x_{0}}$.

Acknowledgements

The author thanks N. Fakhruddin for a useful correspondence. Thanks are due to the Harish-Chandra Research Institute, where the work was carried out, for hospitality.

References

[1] M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc. 85 (1957) 181-207.
[2] V. Balaji, I. Biswas, On principal bundles with vanishing Chern classes, J. Ramanujan Math. Soc. 17 (2002) 187-209.
[3] M.L. Green, Infinitesimal methods in Hodge theory, Algebraic cycles and Hodge theory (Torino, 1993), Lecture Notes in Mathematics, 1594, Springer, Berlin, 1994, pp. 1-92.
[4] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, Springer, Berlin, 1984.
[5] S. Kobayashi, Differential Geometry of Complex Vector Bundles, vol. 15, Publications of the Mathematical Society of Japan/Iwanami Shoten Publishers/Princeton University Press, 1987.
[6] D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Oxford University Press, London, 1970.
[7] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975) 129-152.
[8] A. Ramanathan, Moduli for principal bundles over algebraic curves: I, Proc. Ind. Acad. Sci. 106 (1996) 301-328.

[^0]: * Fax: +91-22-2280-4610.

 E-mail address: indranil@math.tifr.res.in (I. Biswas).

