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Flat principal bundles over an abelian variety
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Abstract

We prove that a principalG-bundleEG over a complex abelian varietyA, whereG is a complex
reductive algebraic group, admits a flat holomorphic connection if and only ifEG is isomorphic to
all the translations of it by the group structure ofA.
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1. Introduction

Let G be a complex connected reductive linear algebraic group andA a complex abelian
variety. A principalG-bundleEG overA admits a flat holomorphic connection ifEG is given
by a representation of the fundamental groupπ1(A) in G. If EG admits a flat holomorphic
connection then for anyx ∈ A the pullbackτ∗

x EG is isomorphic toEG, whereτx is the
isomorphism ofA defined byy �→ x + y. This can be proved using the fact thatτx is
homotopic to the identity automorphism ofA.

We prove that the converse is true, namely, the condition thatτ∗
x EG is isomorphic to

EG for eachx ∈ A implies thatEG admits a flat holomorphic connection (Theorem 3.1).
The proof of the theorem involves showing that such a translation invariantG-bundle is
semistable.

We also show thatEG admits a flat holomorphic connection if it admits a holomorphic
connection. In other words, the following three conditions are equivalent: (1) the isomor-
phism class ofEG is left invariant by translations inA; (2) EG admits a holomorphic
connection; (3)EG admits a flat holomorphic connection.
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2. Preliminaries

Let A be an abelian variety overC of dimensiond, with d ≥ 1. Fix an ample line bundle
L overA. For a coherent sheafF onA, the degree ofF is defined as

degree(F) :=
∫

A

c1(F)c1(L)d−1.

A torsionfree sheafE on A is calledsemistableif for any nonzero coherent subsheafF of
E the inequality

degree(F)

rank(F)
≤ degree(E)

rank(E)

is valid [5, p. 168]. For a torsionfree coherent sheafF defined on a Zariski open subset
U ⊂ A with the codimension of the complementA \ U at least two, the direct imageι∗F

is a coherent sheaf onA, whereι is the inclusion map ofU in A. For such a sheafF define

degree(F) := degree(ι∗F).

Let G be a complex connected reductive linear algebraic group. A principalG-bundle over
A is a smooth complex varietyEG equipped with a right algebraic action ofG and a smooth
surjective morphism

p : EG → A, (2.1)

such that

(1) the mapp commutes with the actions ofG, with G acting trivially onA;
(2) the map

EG × G → EG ×A EG,

to the fiber product defined by(z, g) �→ (z, zg) is an isomorphism.

Ramanathan[7,8] extended the notion of semistability toG-bundles. We will briefly
recall the definition. Take a principalG-bundleEG overA. Let

EP ⊂ EG|U,

be a reduction of structure group ofE to a parabolic subgroupP ⊂ G over a nonempty
Zariski open subsetU ⊂ A with the codimension of the complementA \ U being at least
two. Letχ be a character ofP dominant with respect to a Borel subgroup contained inP . The
groupP acts onEP × C as follows: the action of anyg ∈ P sends(z, c) to (zg, χ(g−1)c).
So

Eχ := EP × C

P

is a line bundle overU, which is called the line bundle associated toEP for χ.
TheG-bundleEG is calledsemistableif in everysuch situation describe above, the degree

of the line bundleEχ is nonpositive.
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For any analytic open subsetU ⊂ A, consider the inverse imagep−1(U), wherep is the
projection in(2.1), which is a complex manifold equipped with an action ofG. Let C(U)

denote the space of holomorphic vector fields onp−1(U) that are left invariant by the action
of G on p−1(U). Note thatC(U) is closed under multiplication by holomorphic functions
pulled back fromU. Since the action ofG is transitive on the fibers ofp, the sheaf onA
that associates to anyU the vector spaceC(U) is coherent analytic. Let At(EG) denote the
corresponding holomorphic, hence algebraic, vector bundle overA defined by this coherent
sheaf.

The vector bundle At(EG) defined above is known as theAtiyah bundlefor EG [1]. Since
C(U) is closed under the Lie bracket operation, there is an induced Lie algebra structure on
the sections of At(EG).

Let g be the Lie algebra ofG, and

ad(EG) := EG × g
G

,

the adjoint bundle;G acts ong by conjugation. There is an exact sequence of vector bundles

0 → ad(EG) → At(EG)
σ−→TA → 0, (2.2)

overA whereσ is defined using the differential dp, and the subbundle ad(EG) corresponds
to theG-invariant vertical vector fields[1]. This sequence is known as theAtiyah exact
sequence.

A holomorphic connectionon E is a splitting of the Atiyah exact sequence, that is, a
homomorphism of holomorphic vector bundles

D : TA → At(EG),

such thatσ ◦ D is the identity automorphism ofTA [1]. The obstruction forD to be a Lie
algebra homomorphism is thecurvatureof D. The curvature is a ad(EG)-valued holomor-
phic two form onA. The holomorphic connectionD is calledflat if its curvature vanishes
identically.

A holomorphic connection on a vector bundleV is a first order holomorphic differen-
tial operator fromV to Ω1

A ⊗ V satisfying the Leibniz identity. Note that a holomorphic
connection on a holomorphic vector bundle of rankn is a holomorphic connection on the
corresponding principal GL(n, C)-bundle.

3. Translation invariant bundles

For anyx ∈ A, let

τx : A → A,

be the translation map defined using the group structure ofA. In other words,τx(y) = x+y.

Theorem 3.1. LetEG be a principalG-bundle overA. The following three are equivalent:

(1) TheG-bundleEG admits a holomorphic connection.
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(2) For eachx ∈ X, the pullbackG-bundleτ∗
x EG is isomorphic toEG.

(3) TheG-bundleEG admits a flat holomorphic connection.

Proof. It is easy to see that (3) implies (2), asτx is homotopic to the identity map. To prove
this assertion in detail, letD be a flat holomorphic connection onEG. Fix a smooth path
γ : [0, 1] → A connectingx with the identity elemente of A. So,γ(0) = e andγ(1) = x.
Let

T : EG → τ∗
x EG,

be the isomorphism ofG-bundles that sends the fiber ofE over anyy ∈ A to the fiber ofE
overx + y using parallel transport (for the connectionD) along the pathγy : [0, 1] → A

defined byγy(t) = γ(t) + y. Since the holomorphic connectionD is flat, the mapT defined
this way is a holomorphic isomorphism ofG-bundles. Therefore, (3) implies (2).

We will now show that ifEG admits a holomorphic connection, then it admits a flat
holomorphic connection. We will first recall from[2] a criterion for the existence of a flat
holomorphic connection.

TheG-bundleEG admits a flat holomorphic connection if the following three conditions
hold:

(a) theG-bundleEG is semistable;
(b) c2(ad(EG)) ∈ H4(A, Q) vanishes;
(c) for every characterχ of G, the associated line bundle

Eχ := EG × C

G
, (3.1)

overA is of degree zero; the quotient is for the action ofG defined as follows: the action
of anyg ∈ G sends(z, c) to (zg, χ(g−1)c).

See[2, p. 205, Theorem 4.5].
Let D be a holomorphic connection on theG-bundleEG. The holomorphic connection

D induces a holomorphic connection on any vector bundle overA associated toEG by
some representation ofG. In particular, both ad(EG) andEχ have induced holomorphic
connections. Now, a theorem of Atiyah says that for a holomorphic vector bundleV with
a holomorphic connection all the rational Chern classes ofV (of positive degree) vanish
[1, Theorem 4, p. 192].

Therefore, in view of the above criterion of[2], to prove (1) implies (3) in the statement of
the theorem all we need to show is thatEG is semistable. Now, theG-bundleEG is semistable
if the vector bundle ad(EG) is semistable[2, Lemma 4.3, p. 202]. (Actually the content of
Lemma 4.3 of[2] is thatEG is semistable if and only if ad(EG) is semistable. The assertion
that EG is semistable if ad(EG) is semistable is actually a straight-forward consequence
of the definition of semistability ofEG.) Since the holomorphic connectionD on EG

induces a holomorphic connection on the vector bundle ad(EG), to prove semistability of
ad(EG) it suffices to show that any vector bundle overA with a holomorphic connection is
semistable.

Let F be a holomorphic vector bundle overA equipped with a holomorphic connection
D0. Consider the Harder–Narasimhan filtration ofF [5, Theorem 7.15, p. 174]. If F is not
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semistable, letF1 be the maximal semistable subsheaf ofF , that is,F1 is the first term in
the Harder–Narasimhan filtration ofF .

Let

S : F1 → Ω1
A ⊗

(
F

F1

)
, (3.2)

be the second fundamental form ofF1 for the connectionD0 onF . SoS is the composition

F1 ↪→ F
D0−→ Ω1

A ⊗ F
Id⊗q−→ Ω1

A ⊗
(

F

F1

)
,

of homomorphisms of sheaves, whereq : F → F/F1 is the quotient map. Note that the
composition isOA-linear.

From the properties of the Harder–Narasimhan filtration it follows immediately that

H0
(

A, Hom

(
F1,

F

F1

))
= 0. (3.3)

Indeed, the slope (=degree/rank) ofF1 is strictly greater than the slope of any coherent
subsheaf ofF/F1. SinceF1 is semistable, any quotient ofF1 has slope at least that of
F1. Therefore, if there is a nonzero homomorphism ofF1 to F/F1, then the image of the
homomorphism contradicts the condition that the slope ofF1 is strictly greater than the
slope of any subsheaf ofF/F1.

SinceΩ1
A is the trivial vector bundle of rankd, we have

H0
(

A, Hom

(
F1, Ω1

A ⊗
(

F

F1

)))
= H0

(
A, Hom

(
F1,

F

F1

))
⊗C Cd.

Now (3.3)gives

H0
(

A, Hom

(
F1, Ω1

A ⊗
(

F

F1

)))
= 0.

In particular,S = 0, whereS is defined in(3.2). In other words, the subsheafF1 of F is
preserved byD. Therefore, degree(F1) = 0 [1, Theorem 4, p. 192]. (Note that sinceF1 is
torsionfree, it is locally free on a Zariski open subsetU with the codimension ofA \ U at
least two. Therefore, degree(F1) = degree(F1|U).) On the other hand degree(F) = 0 as
F admits a holomorphic connection. Since degree(F1) = degree(F), the vector bundleF
must be semistable. Consequently,F admits a flat holomorphic connection by the criterion
of [2].

Now we will show that (2) implies (3) in the statement of the theorem. So, letEG be a
principalG-bundle overA with the property thatτ∗

x EG is isomorphic toEG for eachx ∈ A.
LetV be a complex leftG-module of dimensionn. Consider the associated vector bundle

EV := EG × V

G
,

of rankn overA, where the quotient is for the action ofG defined as follows: the action of
anyg ∈ G sends(z, v) ∈ EG × V to (zg, g−1v). The condition thatτ∗

x EG is isomorphic to
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EG implies that the vector bundleτ∗
x EV is isomorphic toEV . In particular, the line bundle

L :=
n∧

EV

(the dimension ofV is n) over A has the property thatτ∗
xL is isomorphic toL for each

x ∈ A. This implies that

degree(L) = 0 (3.4)

In [6, Definition, p. 74], Mumford defines Pic0(A) to be the group of all line bundlesL′ over
A with the property thatτ∗

x L′ is isomorphic toL′ for eachx ∈ A (the mapψ in [6, Definition,
p. 74]is defined in p. 60 of[6]). Then it is shown that Pic0(A) (with this definition) coincides
with the usual Pic0(A), namely, the group of topologically trivial holomorphic line bundles
overA (see[6, p. 86]).

If the vector bundleEV is not semistable, let

V ′ ⊂ EV ,

be the maximal semistable subsheaf ofEV , that is, the subsheafV ′ is the first term in the
Harder–Narasimhan filtration ofEV . Since

τ∗
x EV

∼= EV ,

from the uniqueness of the Harder–Narasimhan filtration it follows immediately that

τ∗
x V ′ ∼= V ′.

Therefore, the determinant line bundle∧topV ′ has the property that

τ∗
x ∧top V ′ ∼= ∧topV ′.

As we saw in(3.4), this implies that degree(V ′) = degree(∧topV ′) = 0. Since

degree(EV ) = 0 = degree(V ′),

we conclude thatEV is semistable.
Consequently, the condition that the pullbackG-bundleτ∗

x EG is isomorphic toEG for any
x ∈ A implies that the vector bundle ad(EG) is semistable and the line bundleEχ in (3.1)is of
degree zero. In view of the criterion of[2] for the existence of a flat holomorphic connection
(criterion described earlier), to complete the proof we need to show thatc2(ad(EG)) ∈
H4(A, Q) vanishes.

Let

C2(ad(EG)) ∈ CH2(A), (3.5)

be the image of the second Chern class of the vector bundle ad(EG) in the Chow group (see
Chapter 3 of[4]). The condition that

τ∗
x ad(EG) ∼= ad(EG)

for eachx ∈ A implies that the elementC2(ad(EG)) ∈ CH2(A) is left invariant by the
action ofA on CH2(A) by translations.
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We will now show that if an elementc ∈ CH2(A) has the property that

c = τx(c) ∈ CH2(A)

for eachx ∈ X, then the cycle class ofc in H4(A, Q) vanishes.
The cycle class map will be denoted byψ. Sinceτx is homotopic to the identity map of

A, we have

ψ(τx(c)) = ψ(c) ∈ H4(A, Q),

that is,τx(c) andc are homologically equivalent. So the image ofτx(c) − c ∈ CH2(A) by
the Abel–Jacobi map AJA

AJA(τx(c) − c) ∈ J2(A) := H3(A, C)

F2H3(A, C) + H3(A, Z)
.

See[3, p. 22]for the Abel–Jacobi map and the definition ofJ2(A). Let

I : A → J2(A), (3.6)

be the map that sends anyy ∈ A to AJA(τy(c) − c) ∈ J2(A). This mapI is holomorphic,
which is a consequence of the properties ofJ2(A).

The holomorphic cotangent spaceΩ1
e of A at the identity elemente will be denoted by

W . SoHi,j(A) is naturally identified with(∧iW) ⊗ (∧jW̄), whereW̄ is the conjugate of
W , equivalently,W̄ = (T 0,1

e A)∗.
Consider the differential

dI(e) : W∗ → T0J2(A) = ∧3W̄ ⊕ (W ⊗ ∧2W̄), (3.7)

at the pointe ∈ A of the mapI constructed in(3.6); here 0∈ J2(A) is the identity element.
Note that

ψ(c) ∈ H2,2(A) = ∧2W ⊗ ∧2W̄.

The homomorphism dI(e) in (3.7) is the contraction ofψ(c). In other words

dI(e)(w) = 〈w, ψ(c)〉 ∈ W ⊗ ∧2W̄ ⊂ T0J2(A)

for all w ∈ W∗, where〈−, −〉 is the contraction ofW∗ with W . That dI(e) is the contraction
homomorphism is a straight-forward consequence of the description of the differential of
the Abel–Jacobi map (see[3, p. 28]).

Therefore, the condition

τx(c) = c ∈ CH2(A)

for all x ∈ A implies thatψ(c) = 0 (as the contraction withW∗ vanishes identically).
Consequently,ψ(C2(ad(EG))) = 0. But ψ(C2(ad(EG))) = c2(ad(EG)) ∈ H4(A, Q).

So EG admits a flat holomorphic connection by the criterion of[2]. This completes the
proof of the theorem. �
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Let x′ ∈ A be such that the subgroup ofA generated byx′ is Zariski dense inA. It is easy
to see that such an element exists. In fact, the subset defined by all elements ofA with this
property is Zariski dense.

Theorem 3.1has the following corollary.

Corollary 3.2. Let EG be a principalG-bundle overA such thatτ∗
x′EG is isomorphic to

EG. ThenEG admits a flat holomorphic connection.

Proof. For any characterχ of G, consider the line bundleEχ defined in(3.1). Let c :=
c1(Eχ) ∈ H2(A, Q) be the first Chern class, and denote byχ′ the element defined byEχ

in the component Picc(A) of the Picard group. LetHx′ ⊂ A be the subgroup generated by
x′. Sinceτ(χ′) = χ′ for all x ∈ Hx′ andHx′ is Zariski dense inA, we haveτ(χ′) = χ′ for
all x ∈ A. As we saw in the proof ofTheorem 3.1, this implies thatc1(Eχ) = [χ′] = 0.

Similarly, sinceC2(ad(EG)) (defined in(3.5)) coincides withτx(C2(ad(EG))) for all x

in the Zariski dense subgroupHx′ , we haveτx(C2(ad(EG))) = C2(ad(EG)) for all x ∈ A.
Consequently, as in the proof ofTheorem 3.1, we conclude thatc2(ad(EG)) = 0.

In the proof ofTheorem 3.1we saw that ifEG is isomorphic to all translations of it,
then any associated vector bundle is semistable. This proof clearly goes through under the
assumption thatτ∗

y EG
∼= EG for all y in the Zariski dense subgroupHx′ . Therefore, the

proof of the corollary is complete. �

The above corollary can be reformulated as follows.
Let x0 ∈ A andEG a G-bundle such thatτx0EG

∼= EG. Let Ax0 ⊂ A be the connected
component of the Zariski closure of the subgroup generated byx0 containing the identity
element. SoAx0 is a subabelian variety ofA.

Corollary 3.3. TheG-bundleEG|Ax0
over the abelian varietyAx0 admits a flat holomorphic

connection.

This corollary follows fromCorollary 3.2by settingA = Ax0.
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